250 research outputs found

    Luminosity Distributions within Rich Clusters - III: A comparative study of seven Abell/ACO clusters

    Full text link
    We recover the luminosity distributions over a wide range of absolute magnitude (-24.5 < M_{R} < -16.5) for a sample of seven rich southern galaxy clusters. We find a large variation in the ratio of dwarf to giant galaxies, DGR: 0.8\le DGR DGR \le 3.1. This variation is shown to be inconsistent with a ubiquitous cluster luminosity function. The DGR shows a smaller variation from cluster to cluster in the inner regions (r \ls 0.56 Mpc). Outside these regions we find the DGR to be strongly anti-correlated with the mean local projected galaxy density with the DGR increasing towards lower densities. In addition the DGR in the outer regions shows some correlation with Bautz-Morgan type. Radial analysis of the clusters indicate that the dwarf galaxies are less centrally clustered than the giants and form a significant halo around clusters. We conclude that measurements of the total cluster luminosity distribution based on the inner core alone are likely to be severe underestimates of the dwarf component, the integrated cluster luminosity and the contribution of galaxy masses to the cluster's total mass. Further work is required to quantify this. The observational evidence that the unrelaxed, lower density outer regions of clusters are dwarf-rich, adds credence to the recent evidence and conjecture that the field is a predominantly dwarf rich environment and that the dwarf galaxies are under-represented in measures of the local field luminosity function.Comment: 31 pages including 11 figures. Also available from http://star-www.st-and.ac.uk/~spd3/bib.htm

    Luminosity Distributions within Rich Clusters - II: Demonstration and Verification via Simulation

    Full text link
    We present detailed simulations of long exposure CCD images. The simulations are used to explore the validity of the statistical method for reconstructing the luminosity distribution of galaxies within a rich cluster i.e. by the subtraction of field number-counts from those of a sight-line through the cluster. In particular we use the simulations to establish the reliability of our observational data presented in Paper 3. Based on our intended CCD field-of-view (6.5 by 6.5 arcmins) and a 1-sigma detection limit of 26 mags per sq arcsecond, we conclude that the luminosity distribution can be robustly determined over a wide range of absolute magnitude (-23 < M_{R} < -16) provided: (a) the cluster has an Abell richness 1.5 or greater, (b) the cluster's redshift lies in the range 0.1 < z < 0.3, (c) the seeing is better than FWHM 1.25'' and (d) the photometric zero points are accurate to within Delta m = \pm 0.12. If these conditions are not met then the recovered luminosity distribution is unreliable and potentially grossly miss-leading. Finally although the method clearly has limitations, within these limitations the technique represents an extremely promising probe of galaxy evolution and environmental dependencies.Comment: 24 pages, 8 figures accepted for publication in MNRAS also available from http://star-www.st-and.ac.uk/~spd3/bib.htm

    Spatially Resolved Spectroscopy of Starburst and Post-Starburst Galaxies in The Rich z~0.55 Cluster CL0016+16

    Full text link
    We have used the Low Resolution Imaging Spectrograph (LRIS) on the W.M. Keck I telescope to obtain spatially resolved spectroscopy of a small sample of six post-starburst and three dusty-starburst galaxies in the rich cluster CL0016+16 at z=0.55. We use this to measure radial profiles of the Hdelta and OII3727 lines which are diagnostic probes of the mechanisms that give rise to the abrupt changes in star-formation rates in these galaxies. In the post-starburst sample we are unable to detect any radial gradients in the Hdelta line equivalent width - although one galaxy exhibits a gradient from one side of the galaxy to the other. The absence of Hdelta gradients in these galaxies is consistent with their production via interaction with the intra-cluster medium, however, our limited spatial sampling prevents us from drawing robust conclusions. All members of the sample have early type morphologies, typical of post-starburst galaxies in general, but lack the high incidence of tidal tails and disturbances seen in local field samples. This argues against a merger origin and adds weight to a scenario where truncation by the intra-cluster medium is at work. The post-starburst spectral signature is consistent over the radial extent probed with no evidence of OII3727 emission and strong Hdelta absorption at all radii i.e. the post-starburst classification is not an aperture effect. In contrast the dusty-starburst sample shows a tendency for a central concentration of OII3727 emission. This is most straightforwardly interpreted as the consequence of a central starburst. However, other possibilities exist such as a non-uniform dust distribution (which is expected in such galaxies) and/or a non-uniform starburst age distribution. The sample exhibit late type and irregular morphologies.Comment: accepted for publication in PAS

    HST Observations of Gravitationally Lensed Features in the Rich Cluster Ac114

    Full text link
    Deep Hubble Space Telescope images of superlative resolution obtained for the distant rich cluster AC114 (z=0.31) reveal a variety of gravitational lensing phenomena for which ground-based spectroscopy is available. We present a luminous arc which is clearly resolved by HST and appears to be a lensed z=0.64 sub-L star spiral galaxy with a detected rotation curve. Of greatest interest is a remarkably symmetrical pair of compact blue images separated by 10 arcsec and lying close to the cluster cD. We propose that these images arise from a single very faint background source gravitationally lensed by the cluster core. Deep ground-based spectroscopy confirms the lensing hypothesis and suggests the source is a compact star forming system at a redshift z=1.86. Taking advantage of the resolved structure around each image and their very blue colours, we have identified a candidate third image of the same source roughly 50 arcsec away. The angular separation of the three images is much larger than previous multiply-imaged systems and indicates a deep gravitational potential in the cluster centre. Resolved multiply-imaged systems, readily recognised with HST, promise to provide unique constraints on the mass distribution in the cores of intermediate redshift clusters.Comment: submitted to ApJ, 6 pages (no figures), uuencoded Postscript, compressed TAR of Postscript figures available via anonymous ftp in users/irs/figs/ac114_figs.tar.gz on astro.caltech.edu. PAL-IRS-

    Galaxy threshing and the formation of ultra-compact dwarf galaxies

    Full text link
    Recent spectroscopic and morphological observational studies of galaxies around NGC 1399 in the Fornax Cluster (Drinkwater et al. 2000b) have discovered several `ultra-compact dwarf' galaxies with intrinsic sizes of ∼\sim 100 pc and absolute BB band magnitudes ranging from -13 to -11 mag. In order to elucidate the origin of these enigmatic objects, we perform numerical simulations on the dynamical evolution of nucleated dwarf galaxies orbiting NGC 1399 and suffering from its strong tidal gravitational field. Adopting a plausible scaling relation for dwarf galaxies, we find that the outer stellar components of a nucleated dwarf are totally removed. This is due to them being tidally stripped over the course of several passages past the central region of NGC 1399. The nucleus, however, manages to survive. We also find that the size and luminosity of the remnant are similar to those observed for ultra-compact dwarf galaxies, if the simulated precursor nucleated dwarf has a mass of ∼\sim 10810^8 M⊙M_{\odot}. These results suggest that ultra-compact dwarf galaxies could have previously been more luminous dwarf spheroidal or elliptical galaxies with rather compact nuclei.Comment: 9 pages 4 figures,2001, ApJL, 552, 10

    The Stellar Populations of Low-redshift Clusters

    Full text link
    We present some preliminary results from an on-going study of the evolution of stellar populations in rich clusters of galaxies. This sample contains core line-strength measurements from 183 galaxies with b_J <= 19.5 from four clusters with ~0.04. Using predictions from stellar population models to compare with our measured line strengths we can derive relative luminosity-weighted mean ages and metallicities for the stellar populations in each of our clusters. We also investigate the Mgb'-sigma and Hbeta_G'-sigma scaling relations. We find that, consistent with previous results, Mgb' is correlated with sigma, the likely explanation being that larger galaxies are better at retaining their heavier elements due to their larger potentials. Hbeta', on the other hand, we find to be anti-correlated with sigma. This result implies that the stellar populations in larger galaxies are older than in smaller galaxies.Comment: 3 pages, 2 figures, to appear in the Proceedings of IAU Colloquium 195: "Outskirts of Galaxy Clusters: intense life in the suburbs", Torino Italy, March 12-16 200

    Dissipative transformation of non-nucleated dwarf galaxies into nucleated systems

    Full text link
    Recent photometric observations by the {\it Hubble Space Telescope (HST)} have revealed the physical properties of stellar galactic nuclei in nucleated dwarf galaxies in the Virgo cluster of galaxies. In order to elucidate the formation processes of nucleated dwarfs, we numerically investigate gas dynamics, star formation, and chemical evolution within the central 1 kpc of gas disks embedded within the galactic stellar components of non-nucleated dwarfs. We find that high density, compact stellar systems can be formed in the central regions of dwarfs as a result of dissipative, repeated merging of massive stellar and gaseous clumps developed from nuclear gaseous spiral arms as a result of local gravitational instability. The central stellar components are found to have stellar masses which are typically  ~5% of their host dwarfs and show very flattened shapes, rotational kinematics, and central velocity dispersions significantly smaller than those of their host dwarfs. We also find that more massive dwarfs can develop more massive, more metal-rich, and higher density stellar systems in their central regions, because star formation and chemical enrichment proceed more efficiently owing to the less dramatic suppression of star formation by supernovae feedback effects in more massive dwarfs. Based on these results, we suggest that gas-rich, non-nucleated dwarfs can be transformed into nucleated ones as a result of dissipative gas dynamics in their central regions. We discuss the origin of the observed correlations between physical properties of stellar galactic nuclei and those of their host galaxies.Comment: 13 pages, 4 figures (1 color), ApJL in pres

    Passive spiral formation from halo gas starvation: Gradual transformation into S0s

    Full text link
    Recent spectroscopic and high resolution HSTHST-imaging observations have revealed significant numbers of ``passive'' spiral galaxies in distant clusters, with all the morphological hallmarks of a spiral galaxy (in particular, spiral arm structure), but with weak or absent star formation. Exactly how such spiral galaxies formed and whether they are the progenitors of present-day S0 galaxies is unclear. Based on analytic arguments and numerical simulations of the hydrodynamical evolution of a spiral galaxy's halo gas (which is a likely candidate for the source of gas replenishment for star formation in spirals), we show that the origin of passive spirals may well be associated with halo gas stripping. Such stripping results mainly from the hydrodynamical interaction between the halo gas and the hot intracluster gas. Our numerical simulations demonstrate that even if a spiral orbits a cluster with a pericenter distance ∼\sim 3 times larger than the cluster core radius, ∼\sim 80 % of the halo gas is stripped within a few Gyr and, accordingly, cannot be accreted by the spiral. Furthermore, our study demonstrates that this dramatic decline in the gaseous infall rate leads to a steady increase in the QQ parameter for the disk, with the spiral arm structure, although persisting, becoming less pronounced as the star formation rate gradually decreases. These results suggest that passive spirals formed in this way, gradually evolve into red cluster S0s.Comment: 13 pages 4 figures (fig.1 = jpg format), accepted by Ap
    • …
    corecore